Comprehensive Math Drill

Let's do a drill involving all of the math topics we have covered throughout the book. Remember to check your answers when you finish. You can find the answers in Part V.

1 of 20

Line AB is tangent to the circle C at point A. The radius of the circle with center C is 5 and $BC = \frac{10\sqrt{3}}{3}$.

 $\begin{array}{c} \underline{\textbf{Quantity A}} \\ \text{The length of line} \\ \text{segment } AB \end{array}$

 $\begin{array}{c} \underline{\textbf{Quantity B}} \\ \text{The length of line} \\ \text{segment } AC \end{array}$

- \bigcirc Quantity A is greater.
- \bigcirc Quantity B is greater.
- \bigcirc The two quantities are equal.
- \bigcirc The relationship cannot be determined from the information given.

2 of 20

$x \neq 0$	
Quantity A	Quantity B
$\frac{x}{10}$	$\frac{x}{5}$
	2

- \bigcirc Quantity A is greater.
- \bigcirc Quantity B is greater.
- \bigcirc The two quantities are equal.
- $\bigcirc\,$ The relationship cannot be determined from the information given.

3 of 20

$\frac{\text{Quantity } \mathbf{A}}{\text{The standard deviation}}$ of the set $\{1,3,5\}$	Quantity B The standard deviation of the set {8,10,12}
\bigcirc Quantity A is greater.	
\bigcirc Quantity B is greater.	
\bigcirc The two quantities are	equal.
 The relationship cannot information given. 	t be determined from the

4 of 20

yPQ x

$\underline{\text{Quantity } \mathbf{A}}$	<u>Quantity B</u>
OQ	OP

- \bigcirc Quantity A is greater.
- \bigcirc Quantity B is greater.
- \bigcirc The two quantities are equal.
- $\bigcirc\,$ The relationship cannot be determined from the information given.

5 of 20

At a dog show, there are 20 judges and 10 dogs in the final round.

The number of distinct pairs of judges

Quantity A

The number of possible rankings of dogs from first to third place

Quantity **B**

- \bigcirc Quantity A is greater.
- \bigcirc Quantity B is greater.
- \bigcirc The two quantities are equal.
- $\bigcirc\,$ The relationship cannot be determined from the information given.

6 of 20

$$k > 0 \ l > 1$$

Quantity A

_1	kl
$\overline{\frac{1}{k} + \frac{1}{l}}$	$\overline{\frac{1}{k} + \frac{1}{l}}$

Quantity B

- \bigcirc Quantity A is greater.
- \bigcirc Quantity B is greater.
- \bigcirc The two quantities are equal.
- $\bigcirc\,$ The relationship cannot be determined from the information given.

7 of 20

$\underline{\mathbf{Quantity}}$ $\underline{\mathbf{A}}$	Quantity B
The greatest odd factor of 78	The greatest prime factor of 78

- \bigcirc Quantity A is greater.
- $\bigcirc~$ Quantity B is greater.
- \bigcirc The two quantities are equal.
- \bigcirc The relationship cannot be determined from the information given.

$8~{\rm of}~20$

Joe has \$200. If he buys a DVD player for \$150, what is the greatest number of DVDs he can buy with the remaining money if DVDs cost \$12 each?

Click on the answer box and type in a number. Backspace to erase.

9 of 20

What is the area of triangle ABC in the figure above?

- $\bigcirc 2$
- $\bigcirc 4$
- $\bigcirc 4\sqrt{2}$
- 0 7
- 0 8

10 of 20

By which of the following could $10(9^6)$ be divided by to produce an integer result?

Indicate \underline{all} such values.

- 90
- □ 100
- \Box 330
- \Box 540
- \Box 720
- $11 \ {\rm of} \ 20$

Roberta drove 50 miles in 2 hours. Her rate in miles per hour is equivalent to which of the following proportions?

Indicate <u>all</u> such proportions.

- \Box 5 to 20
- \Box 100 to 4
- \Box 400 to 16
- \Box 20 to 500
- \Box 520 to 20

Questions 12 through 14 refer to the following graph.

12 of 20

For how many of the cities shown was the highest temperature in Year Y greater than or equal to the highest temperature in Year X?

- $\bigcirc 4$
- \bigcirc 5
- \bigcirc 7
- 0 8
- \bigcirc 12

13 of 20

What is the approximate percent increase from the lowest average (arithmetic mean) temperature for Years X and Y to the highest average temperature?

- 60%
- 0 82%
- $\bigcirc 140\%$
- 188%
- \bigcirc 213%

14 of 20

The average (arithmetic mean) temperature for any city in Years X and Y is the average of the high and low temperatures for those years. What is the average of the low temperatures for Baltimore for Years X and Y?

- -9° F
- 11° F
- $\bigcirc 20^{\circ} \mathrm{F}$
- 44° F
- $\bigcirc\,$ It cannot be determined from the information given.

--- High for Year Y

— High for Year X

$15 \ {\rm of} \ 20$

If |2x - 3| + 2 > 7, which of the following could be the value of x?

Indicate <u>all</u> such values.

□ -4

- □ -3
- \Box -2
- □ -1
- $\Box 0$
- \Box 1
- \square 2

16 of 20

If x, y, and z are consecutive odd integers where x < y < z and x + y + z < z, then which of the following could be the value of x?

Indicate \underline{all} such values.

 $\begin{array}{cccc}
-3 \\
-1 \\
0 \\
1 \\
3
\end{array}$

17 of 20

If $4^x = 1,024$, then $(4^{x+1})(5^{x-1}) =$

- $\bigcirc 10^{6}$
- \bigcirc (5⁴)(10⁵)
- \bigcirc (4⁴)(10⁵)
- \bigcirc (5⁴)(10⁴)
- $\bigcirc (4^4)(10^4)$

$18 \ {\rm of} \ 20$

What is the greatest distance between two vertices of a rectangular solid with a height of 5, a length of 12, and a volume of 780 ?

- \bigcirc 12
- $\bigcirc 12\sqrt{2}$
- \bigcirc 13
- $\bigcirc 13\sqrt{2}$
- $\bigcirc 13\sqrt{3}$
- 19 of 20

If three boys and three girls sit in a row on a park bench, and no boy can sit on either end of the bench, how many arrangements of the children on the bench are possible?

- 0 46,656
- 0 38,880
- 0 1,256
- 0 144
- 0 38

20 of 20

If 16 is the average (arithmetic mean) of p, 24, and q, what is 16(p + q) ?

- 180
- \bigcirc 192
- 384
- \bigcirc 524
- 0 768